Continuous Dependence on the Coefficients and Global Existence for Stochastic Reaction Diffusion Equations

نویسندگان

  • MARKUS KUNZE
  • JAN VAN NEERVEN
چکیده

We prove convergence of the solutions Xn of semilinear stochastic evolution equations on a Banach space B, driven by a cylindrical Brownian motion in a Hilbert space H, dXn(t) = (AnX(t) + Fn(t,Xn(t))) dt+Gn(t,Xn(t)) dWH(t), Xn(0) = ξn, assuming that the operators An converge to A and the locally Lipschitz functions Fn and Gn converge to the locally Lipschitz functions F and G in an appropriate sense. Moreover, we obtain estimates for the lifetime of the solution X of the limiting problem in terms of the lifetimes of the approximating solutions Xn. We apply the results to prove global existence for reaction diffusion equations with multiplicative noise and a polynomially bounded reaction term satisfying suitable dissipativity conditions. The operator governing the linear part of the equation can be an arbitrary uniformly elliptic second order elliptic operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

متن کامل

Global Existence, Uniqueness, and Continuous Dependence for a Reaction-diffusion Equation with Memory

Global existence, uniqueness and continuous dependence on initial data are established for a quasilinear functional reaction-diiusion equation which arises from a two-dimensional energy balance climate model. Our approach relies heavily on the so-called stability estimates for linear evolution equations of parabolic type (cf. 6]).

متن کامل

Stochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients

It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...

متن کامل

On Stochastic Evolution Equations with Non-lipschitz Coefficients

In this paper, we study the existence and uniqueness of solutions for several classes of stochastic evolution equations with non-Lipschitz coefficients, that is, backward stochastic evolution equations, stochastic Volterra type evolution equations and stochastic functional evolution equations. In particular, the results can be used to treat a large class of quasi-linear stochastic equations, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011